Prototypes with Multiple Dispatch: An Expressive

and Dynamic Object Model

Lee Salzman Jonathan Aldrich

Carnegie Mellon University

July 28, 2005

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

© Benefits of prototypes and multiple dispatch

@ Challenges in combining prototypes and multiple dispatch
© PMD: a new model of multiple dispatch

© Slate: practical experience with PMD

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

Why Prototypes?

Objects represent themselves (without classes) by describing their
own methods and inheritance relationships.

Benefits

@ Simpler language kernel
@ Metaprogramming

@ Interactive and incremental development

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

Why Multiple Dispatch?

All arguments to a method invocation participate in dispatch, not
just the first.

Benefits

@ fewer restrictions on code factoring and reuse

@ don’t need to use simulations such as double dispatch or
visitor pattern

Integer + Integer
Float + Fraction
Complex + Float

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

Combining Prototypes and Multiple Dispatch

Self [Ung 87] Cecil [Cha 92]

prototypes +
prototypes multiple dispatch

dicti . aini methods constrained to

. ictionaries containing ific obiects or obiect

dispatch specific objects or objects
P methods inheriting them

. . may only copy fields and
cloning copies all methods must inherit methods

method

may only define methods
update anywhere at tz)/p—le}\,/el
inclusion (fixed) and
inheritance delegation

predicate dispatch (dynamic)
[Cha 93]

Lee Salzman, Jonathan Aldrich

Prototypes with Multiple Dispatch: An Expressive and Dyna

Combining Prototypes and Multiple Dispatch: Generic

Functions

@ prior multiple dispatch approaches rely on generic functions
[Bob 88] or similar mechanisms

@ generic function groups together all methods with similar name
and arity

@ apply generic function to invoke a method

@ generic function selects applicable methods by checking
method constraints against arguments

@ orders applicable methods by constraints to find the most
specific one

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

Combining Prototypes and Multiple Dispatch: Generic

Functions Won't Work

@ dispatch information stored in external constraints — not
encapsulated

@ expensive to test and order all the constraints at the time of
dispatch

@ implementations generate dispatch tables or decision trees
based on static inheritance relationships

@ ideal for use with classes where inheritance relationships are

fixed

@ problematic for prototypes where inheritance may be
unpredictable

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

PMD: A Paradigm Shift

Requirements

@ must internalize dispatch information into objects
o all method arguments must decide the result of dispatch
@ must be practical to evaluate inheritance at time of dispatch
Solution: roles
@ Objects may play roles in a method corresponding to the
method’s parameters.

@ A method represents an interaction in which all necessary roles
have been fulfilled.

@ Only objects know which roles they may fulfill.

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

PMD: Concepts

@ A role identifies, for a method definition, a method name and
parameter for which an object agrees to be used, as well as a
method to be run should the role be satisfied.

@ An object is a set of roles and delegation relationships, and
roles may be inherited by delegation.

@ A role is satifisfied if the name of the method to be invoked
and the argument position where the role was found
invocation match those described by the role.

@ A method is applicable if there is a set of satisfied roles
referring to it that cover all arguments to an invocation.

@ Applicable methods are ranked according to the positions of
their corresponding roles in the delegation hierarchy.

role

i nt@g\(i ntn)
s

returnn + 1;

}

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

PMD: Example

0

encounter(Shark1, Shark2)

aggressor

encounter Vi Ctl m

(0 0)

rank

(0, 1)
encounter
method

delegation

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

PMD: The Calculus

Concepts

roles

object identity modeled through object store

°
°

@ method update based on roles

@ dynamic inheritance of roles through delegation
°

multiple dispatch based on roles
Abstracts over:

@ inheritance order

@ precedence of method parameters

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

@ programming language based on PMD and strongly inspired by
Self

@ object model largely the same as Self, with provisions for roles

@ incorporates many organizational concepts from Self without
loss (namespaces and traits)

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

Slate: Further Experience

@ multiple dispatch extensively used in libraries such as numerics,
collections, streams and the compiler

@ libraries designed to take advantage of multiple dispatch and
benefited from it

@ allowed for practical integration of large amounts of objects

Comparable NumericMixin
T T
Number Vector
-
UniqueNumkrer\ CoercibleNumber
—) T
Epsilon Infinity Integer Float Fraction ~ Complex
/ \ / f
PositiveEpsilon Positivelnfinity Smalllntige:\ SingleFloa\N
NegativeEpsilon Negativelnfinity Biglnteger DoubleFloat

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

Slate: Subjectiveness?

Us [Ung 96]
@ perspective-receiver symmetry for subjectiveness
o dispatch on perspective and receiver
@ perspectives dynamically composed with layers

@ noted multiple dispatch allows for similar benefits
Potential uses

@ security

@ multi-user

PMD

@ prototypes useful for creating and composing unique or shared
perspectives

@ multiple dispatch embeds subjectiveness with only a few
changes

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

@ PMD consistently combines prototypes and multiple dispatch.

@ PMD provides a conceptual understanding of why they
combine.

@ PMD’s roles internalize dispatch information.

@ PMD allows for flexible objects with fewer restrictions.

Lee Salzman, Jonathan Aldrich Prototypes with Multiple Dispatch: An Expressive and Dyna

