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Lightmaps, as do other precomputed lighting methods, provide an efficient 
and pleasing solution for lighting and shadowing of relatively static scenes. Most 
of the work of lighting computations can be offloaded to a precomputation step 
and only leave simple texture lookups to be performed at the time of rendering. 
As one makes the technological leap to dynamic lighting and shadowing,  one is 
confronted by methods, such as stencil shadow volumes and shadow mapping, 
which at first appear simple, yet become increasingly complex and expensive as 
one tries to recover the quality of appearance provided by simple lightmapping. 
One can either use these methods uniformly throughout a scene to give the 
lighting a uniform appearance, but at  much greater expense than precomputed 
lighting, or integrate precomputed lighting with a dynamic shadowing method 
with disparate appearance – such as hard-edged or blocky, aliased dynamic 
shadows over soft, static lighting. Ideally, one needs dynamic shadowing tools 
that provide a pleasing level of consistency when integrated with precomputed 
lighting without the leap in cost of applying dynamic lighting and shadowing to 
everything in the scene. 

 Background and Motivation: Variance Shadow Mapping

Variance shadow mapping [1] is a recent shadow mapping variant for 
efficiently approximating the soft-edged shadows caused by area lighting, helping 
reduce the visual quality gap with precomputed lighting.  It overcomes some of 
the efficiency concerns of previous techniques by allowing the shadow map to be 
directly linearly filtered, as by a separable blur or the 3D hardware's provided 
bilinear and trilinear filtering, as opposed to requiring specialized filtering 
methods at the time of shadow map lookup. It accomplishes this by storing in a 
shadow map, for each depth value d of a pixel as viewed from a light source, both 
d and d². Let E(d) and E(d²) correspond to each of these values after some 
arbitrary linear filtering applied to the shadow map, respectively. It then interprets 
E(d) as the mean u and E(d²)-E(d)² as the variance v. Finally, given the depth z 
of a point to be shadowed, if z is greater than (farther from the light) than the 
mean occluder depth u,  then it is determined to be in shadow and then 
approximates a shadowing term v/[v + (z-u)²], where lower values imply more 
shadow and higher values more light. Otherwise, If z is less than or equal to 
(closer to the light) the mean u,  then the pixel is assumed not occluded and to be 
fully lit. 

Suppose one wishes to integrate this method with precomputed lighting, 
ideally by only rendering dynamic elements of the scene into the variance shadow 
map. Initially, the shadow map is cleared with depth values representing the far 
plane of the light source.           Assuming the depth values are normalized, this 
value is simply 1. Then only dynamic elements of the scene are rendered into the 



shadow map with normalized depth values in the range of [0,1]. Finally, suppose 
a linear filter is applied to two texels straddling the edge of a dynamic scene 
elements shadow in this sparse shadow map.  One texel lies outside the shadow 
and has a depth value of 1, and the other lies inside with an intermediate depth 
value s. If s is small relative to the depth range, then after linear filtering between 
the two texels, the resulting mean u term readily skews towards the far plane 
depth value of 1. Thus, any depth z for a point to be shadowed very close to the 
occluder depth s  will tend to be rejected as lit by testing against this skewed 
mean u. One can work around this problem by rendering the entire scene into the 
variance shadow map but at added cost.

Even ignoring this difficulty, variance shadow maps store a squared term d² 
which effectively doubles the precision requirements of the shadow map. This, for 
most practical purposes, compels one to use 16 or 32 bit-per-component textures 
to represent the shadow map, which do not necessarily have guaranteed or even 
efficient bilinear and trilinear filtering on available consumer 3D hardware.

 Another Approach

Consider the supposed use case again. One wants to be able to linearly filter 
the depth values of dynamic scene elements and the far plane together to get a 
resulting shadowing term that can be applied to static elements of the scene and 
mask off their precomputed lighting. 

Taking inspiration from variance shadow maps, assume the desired mask is 
a blurred (by a separate filter) gray-scale image of the shadows of the dynamic 
parts of the scene that need to be projected on the static parts of the scene. 
Suppose this image is augmented, before blurring it, with depth values for each 
occluding texel as in a standard shadow map. If only the shadow mask is blurred, 
then the blurred mask will extend outside where the depth values were rendered 
and cut off much of the faux-penumbra of the shadow. If the depth values are also 
blurred, the depth values will extend as far as the faux-penumbra, but using these 
depth values as-is for the shadowing test will result in the previous problem 
observed with variance shadow mapping. A method of recovering the original, 
unfiltered depth value from the filtered depth value is needed.

Consider the same two texels on a shadow boundary as in the above 
example, such that a linear filter p has been applied to the occluder's depth value 
s and the far plane depth 1. Then the resulting depth value d retrieved from the 
shadow map should satisfy the following: d = p*s + (1-p)*1 = p*(s-1) + 1. Now, 
suppose the shadow map is augmented with a shadow mask (a grayscale image 
of the shadow), that contains the value 1 where there is shadow and 0 where 
there is none. The resulting mask value m retrieved from the shadow map should 
also satisfy the following: m = p*1 + (1-p)*0 = p. Thus this shadow mask will, 
within the limits of the shadow map precision, both serve as the shadowing to be 
applied and give the filter p that was applied to this shadow map texel. Since p is 
known, one may directly solve for the actual depth of the occluder s: s = (d-1)/m 
+ 1. Finally, once you have the occluder depth s, you test the depth z of the point 



to be shadow against s, and if it is farther, then use the mask m as the intensity 
of shadowing to apply.

Implementation

The steps to apply this representation become:
1) clear the shadow map so all depth values are at the far plane 1, and all 

mask values are 0
2) for each occluder render depth d as in a normal shadow map, but also a 

mask value of 1
3) apply a desired linear filter as with variance shadow mapping
4) when shading, recover the unfiltered depth s = (d-1)/m + 1 and test 

against it. If shadowed, use the filtered mask m directly as the shadow 
intensity.

Advantages

The advantages of this representation are that there are no squared terms 
as in variance shadow mapping, so the precision demands are much less. An 8-
bit-per-component shadow map texture, which can be bilinearly and trilinearly 
filtered on most consumer 3D hardware, is feasible provided the depth range of 
the light is not extreme. Larger depth values biases may also suffice to 
accommodate reduced precision usages, as for the intended use one is merely 
trying to cast shadows from objects onto a scene, rather than compute fine-
grained self-shadowing within any individual object.

Disadvantages

The representation is only suitable for casting a soft-edged shadow of the 
fused silhouette of some shadow casters onto a scene. While it can be used for 
self-shadowing as in a normal shadow map, it would fail to provide soft shadowing 
for that purpose.

In the case occluders at different depths are filtered together, the 
reconstructed occluder depth will end up some weighted average of them, which 
can cause shadowing artifacts in some cases. In the case that there is a shadow 
receiver between two shadow casters along a single light ray, the reconstructed 
occluder depth value may be pushed behind the shadow receiver such that that 
receiver fails to shadow. The representation is most suitable for scenes where 
there is not a complex intermingling of objects and scene or where such artifacts 
would be transient and not often noticed.

Integrating with Single-pass Lightmaps

If one uses a single-pass lightmapping system that combines the 
contribution of all lights in a scene into a single lightmap and uses a single 
shadow map to mask off this lightmap and create faux-shadows, the resulting 
faux-shadows may “bleed” through surfaces. This is, however, not a weakness of 



the above representation, but of applying a shadow map to a single-pass 
combined lightmap. 

Suppose a character model is standing above a bridge, with a single 
sunlight casting down upon him. The shadow map is likewise oriented to cast 
faux-shadows downward and will determine that all points below the character are 
in shadow. Assuming the sunlight is the only light source, the lightmaps would 
already encode the fact that the area under the bridge is in shadow, so that 
masking off any light underneath would only shadow an area that is already in 
shadow. Thus, in the case of a single light per lightmap, masking off the light it 
provides should not cause artifacts. Suppose, however, that there is a torch 
underneath the bridge. The character's faux-shadow will also mask off this torch's 
light, even though the character is not visible in the are underneath the bridge. 
Similar artifacts might occur if indirect lighting were to brighten the area in which 
the character's shadow fell. Ideally, the character should only cast a faux-shadow 
on the surface immediately behind him from the light's point of view.

This clamping of the shadow can be accomplished by adding an additional 
value to the shadow map that sets a far bound on the shadowing region, in 
addition to the near bound already set by the occluder depth stored in the shadow 
map. A method to generate this far bound, inspired by depth peeling, proceeds as 
follows:

1) clear a third component of the shadow map storing the far bound to the far 
plane 1 when clearing the other two components

2) render occluder depths and mask values into the shadow map, leaving the 
far bound untouched

3) invert the z-buffer test so that only surfaces behind the occluders will render 
into the shadow map, and disable z-buffer writes so that all such surfaces 
behind the occluders will be rendered

4) using min-max blending functionality, such as the GL_EXT_blend_minmax 
extension in OpenGL, set the blend function to accumulate the minimum 
value in this third far bound component, either by utilizing a color mask if 
available so that only the third component is written to, or by setting the 
other values of components to be blended to some suitable value such as 1 
so that they remain unaltered

5) render the shadow receivers - preferably the back faces so as to minimize 
depth biasing problems

6) when shading, reconstruct the far bound in parallel with the occluder depth 
(taking advantage of the vector nature of instructions on GPUs), using the 
same method described above, and verify that the pixel to be shadowed 
also lies within this far bound to determine if it is actually shadowed

This method, while requiring the shadow receivers to be rendered into the 
shadow map, is still never-the-less likely more efficient than rendering the entire 
scene into an entire shadow map, as due to the inverted z-buffer test and the fact 
that unshadowed texels of the shadow map have their z-buffer values initialized 
to a suitable far plane, most of the shadow map will be effectively stenciled off by 



the 3D hardware, rejecting all writes to the shadow map except to specifically 
those areas where there are shadow casters.

Also, since renderable two-component formats are, at the time of this 
writing, relatively rare, the space overhead of this extra component is amortized – 
the extra component would otherwise go unused.

Efficient Blurring

Even using a separate blur filter, the number of texture lookups per shadow 
map texel to achieve a desirable blur can become expensive on older 3D 
hardware. Taking advantage of the fact that the shadow casters occupy the 
shadow map only sparsely, one can limit the blur to take place only within specific 
portions of the shadow map containing the shadow casters where it is actually 
needed.

One simple way to achieve this is to subdivide the shadow map into a grid, 
rendering the bounding square of the shadow casters into the grid. The grid can 
then be grouped into maximally sized quadrilateral regions using a simple run-
length step upon non-empty grid squares. Blurring is then performed only within 
these quadrilaterals. If size of the grid is adequately chosen, each row of the grid 
can be efficiently represented by a bit vector, reducing the cost of managing the 
grid. This same grid can also be used to test if a shadow receiver is within the 
area of influence of any shadow caster, by checking its bounding square in the 
shadow map against this grid, also making efficient usage of the bit vector 
representation of grid rows.    

Possible Extensions

If one considers that mask values for shadows may be rendered as 
anywhere in the range of [0,1], rather than just 0 to indicate a background and 1 
to represent an occluder, one may directly render the transparency of an object 
into a third shadow contribution component, which gets used as the final 
shadowing contribution instead of the mask value, allowing a transparent occluder 
to only contribute partial shadowing.
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